

### **Cambridge International Examinations**

Cambridge International General Certificate of Secondary Education

CHEMISTRY 0620/41

Paper 4 Theory Extended

May/June 2017

MARK SCHEME
Maximum Mark: 80

#### **Published**

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the May/June 2017 series for most Cambridge IGCSE<sup>®</sup>, Cambridge International A and AS Level and Cambridge Pre-U components, and some Cambridge O Level components.

® IGCSE is a registered trademark.

This syllabus is approved for use in England, Wales and Northern Ireland as a Cambridge International Level 1/Level 2 Certificate.

CAMBRIDGE
International Examinations

[Turn over

© UCLES 2017

0620/41

1(d)(ii)

 $Sr_3P_2$ 

### Cambridge IGCSE – Mark Scheme

May/June 2017

| 020/11   |                                |                      |                    | Odink               | PUBLISHED   | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |
|----------|--------------------------------|----------------------|--------------------|---------------------|-------------|-----------------------------------------|
| Question |                                |                      |                    |                     | Answer      | Marks                                   |
| 1(a)     | proton r                       | number: the nu       | mber of prote      | ons                 |             | 1                                       |
|          | nucleon                        | number: the to       | otal number        | of protons ar       | nd neutrons | 1                                       |
|          | nucleon                        | number: in the       | e nucleus/nu       | ıclei (of an at     | tom)        | 1                                       |
| 1(b)     | (hydrog                        | en is the only a     | atom to have       | ) no neutrons       | S           | 1                                       |
| 1(c)     |                                |                      |                    |                     |             |                                         |
|          |                                | number of protons    | number of neutrons | number of electrons |             |                                         |
|          | <sup>19</sup> F                | 9                    | 10                 | 9                   |             |                                         |
|          | <sup>26</sup> Mg               | 12                   | 14                 | 12                  |             |                                         |
|          | <sup>31</sup> P <sup>3–</sup>  | 15                   | 16                 | 18                  |             |                                         |
|          | <sup>87</sup> Sr <sup>2+</sup> | 38                   | 49                 | 36                  |             |                                         |
|          | fluorine                       | protons <b>AND</b> i | neutrons corr      | ect                 |             | 1                                       |
|          | magnes                         | ium neutrons A       | AND electror       | s correct           |             | 1                                       |
|          | phospho                        | orus protons A       | ND neutrons        | correct             |             | 1                                       |
|          | phospho                        | orus electrons       | correct            |                     |             | 1                                       |
|          | strontiu                       | n protons <b>ANI</b> | neutrons co        | orrect              |             | 1                                       |
|          | strontiu                       | n electrons co       | rrect              |                     |             | 1                                       |
| 1(d)(i)  | MgF <sub>2</sub>               |                      |                    |                     |             | 1                                       |
|          | 1                              |                      |                    |                     |             | †                                       |

© UCLES 2017 Page 2 of 7

# Cambridge IGCSE – Mark Scheme **PUBLISHED**

| Question  | Answer                                                                | Marks |
|-----------|-----------------------------------------------------------------------|-------|
| 2(a)(i)   | SO <sub>2</sub>                                                       | 1     |
| 2(a)(ii)  | Na <sub>2</sub> O                                                     | 1     |
| 2(a)(iii) | $Cr_2O_3$                                                             | 1     |
| 2(a)(iv)  | SiO <sub>2</sub>                                                      | 1     |
| 2(a)(v)   | $Al_2O_3/Cr_2O_3$                                                     | 1     |
| 2(a)(vi)  | СО                                                                    | 1     |
| 2(b)(i)   | an amphoteric oxide will react with acids AND with bases              | 1     |
| 2(b)(ii)  | a neutral oxide will <b>not</b> react with acids <b>or</b> with bases | 1     |

| Question  | Answer                                               | Marks |
|-----------|------------------------------------------------------|-------|
| 3(a)(i)   | no (more) effervescence                              | 1     |
| 3(a)(ii)  | magnesium carbonate                                  | 1     |
| 3(a)(iii) | (a solution in which) no more solute will dissolve   | 1     |
|           | at that temperature                                  | 1     |
| 3(a)(iv)  | the solubility deceases as the temperature decreases | 1     |
| 3(b)(i)   | moles of water = 2.52/18 = 0.14 (mol)                | 1     |
| 3(b)(ii)  | moles of anhydrous magnesium sulfate = 0.02 (mol)    | 1     |
| 3(b)(iii) | ratio = 0.02/0.02 : 0.14/0.02 = 1 : 7                | 1     |

0620/41

## Cambridge IGCSE – Mark Scheme **PUBLISHED**

May/June 2017

| Question | Answer                                                  | Marks |
|----------|---------------------------------------------------------|-------|
| 3(b)(iv) | MgSO <sub>4</sub> .7H <sub>2</sub> O                    | 2     |
|          | M1 MgSO <sub>4</sub> M2 rest of the formula correct     |       |
| 3(c)     | mix and stir the two solutions                          | 1     |
|          | filter (to obtain residue)                              | 1     |
|          | wash (the residue) using water                          | 1     |
|          | dry the residue between filter papers / in a warm place | 1     |
| 3(d)     | $Pb^{2+}(aq) + SO_4^{2-}(aq) \rightarrow PbSO_4(s)$     | 2     |
|          | M1 correct species M2 correct state symbols             |       |

| Question | Answer                                  | Marks |
|----------|-----------------------------------------|-------|
| 4(a)(i)  | roast in air                            | 1     |
| 4(a)(ii) | $2ZnS + 3O_2 \rightarrow 2ZnO + 2SO_2$  | 2     |
|          | M1 correct species M2 correct balancing |       |
| 4(b)(i)  | coke                                    | 1     |
| 4(b)(ii) | zinc is vaporised/boiled                | 1     |
|          | and is condensed                        | 1     |

# Cambridge IGCSE – Mark Scheme **PUBLISHED**

| May  | //June | 2017 |
|------|--------|------|
| ivia |        |      |

| Question  | Answer                                                                                                                       | Marks |
|-----------|------------------------------------------------------------------------------------------------------------------------------|-------|
| 4(c)(i)   | $Zn \rightarrow Zn^{2+} + 2e^{-}$                                                                                            | 2     |
|           | M1 correct species M2 correct balancing                                                                                      |       |
| 4(c)(ii)  | $2H^{+} + 2e^{-} \rightarrow H_{2}$                                                                                          | 2     |
|           | M1 correct species M2 correct balancing                                                                                      |       |
| 4(c)(iii) | change: (the intensity would) decrease                                                                                       | 1     |
|           | reason: the difference in reactivity between zinc and iron is less than the difference in reactivity between zinc and copper | 1     |

| Question | Answer                                                                   | Marks |
|----------|--------------------------------------------------------------------------|-------|
| 5(a)     | (stop-) watch AND syringe                                                | 1     |
| 5(b)     | graph starts at <b>X</b> and is a curve with a decreasing gradient       | 1     |
|          | graph hits zero rate at 114±6 seconds                                    | 1     |
| 5(c)     | <b>M1</b> moles of carbon dioxide = 180/24 000 = 0.0075                  | 1     |
|          | M2 molar mass of barium carbonate = 197                                  | 1     |
|          | M3 mass of barium carbonate = M1 · M2 = 1.48 (g)                         | 1     |
| 5(d)     | curve starts from (0,0) and has a lower gradient than the original curve | 1     |
|          | because lumps have a lower surface area                                  | 1     |

# Cambridge IGCSE – Mark Scheme **PUBLISHED**

May/June 2017

|          | . 652.6.125                                                                        |       |
|----------|------------------------------------------------------------------------------------|-------|
| Question | Answer                                                                             | Marks |
| 5(e)     | curve starts from (0,0) and has a steeper gradient than the original curve         | 1     |
|          | finishes at the same volume of gas                                                 | 1     |
|          | because there are more particles per unit volume / dm³ / cm³                       | 1     |
|          | because there are more collisions per second/unit time OR a greater collision rate | 1     |
| 5(f)     | 360 (cm <sup>3</sup> )                                                             | 1     |

| Question | Answer                                                                                                                                                                                                                                                                                                                               | Marks |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6(a)     | (compound that) contains carbon and hydrogen                                                                                                                                                                                                                                                                                         | 1     |
|          | and no other elements/only                                                                                                                                                                                                                                                                                                           | 1     |
| 6(b)     | any 3 from:     same/similar chemical properties     (same) general formula     (consecutive members) differ by CH <sub>2</sub> same functional group     common (allow similar) methods of preparation     physical properties vary in predictable manner/show trends/gradually change/example of a physical property     variation | 3     |
| 6(c)     | propene                                                                                                                                                                                                                                                                                                                              | 1     |
|          | structure correctly shown                                                                                                                                                                                                                                                                                                            | 1     |
| 6(d)     | steam                                                                                                                                                                                                                                                                                                                                | 1     |
|          | catalyst                                                                                                                                                                                                                                                                                                                             | 1     |

© UCLES 2017 Page 6 of 7

0620/41

# Cambridge IGCSE – Mark Scheme **PUBLISHED**

| Question  | Answer                                                                                            | Marks |
|-----------|---------------------------------------------------------------------------------------------------|-------|
| 6(e)(i)   | butanoic acid                                                                                     | 1     |
|           |                                                                                                   | 1     |
| 6(e)(ii)  | acidified                                                                                         | 1     |
|           | (potassium) manganate(VII)                                                                        | 1     |
| 6(e)(iii) | oxidation                                                                                         | 1     |
| 6(f)      | methanol                                                                                          | 1     |
|           | ethanoic acid                                                                                     | 1     |
|           | catalyst                                                                                          | 1     |
|           | heat                                                                                              | 1     |
|           | CH <sub>3</sub> COOH + CH <sub>3</sub> OH → CH <sub>3</sub> COOCH <sub>3</sub> + H <sub>2</sub> O | 1     |